Scalable Exact Inference in Multi-Output Gaussian Processes

Wessel P. Bruinsma^{1,2}, Eric Perim², Will Tebbutt¹, J. Scott Hosking^{3,4}, Arno Solin⁵, Richard E. Turner^{1,6}

¹University of Cambridge, ²Invenia Labs, ³British Antarctic Survey, ⁴Alan Turing Institute, ⁵Aalto University, ⁶Microsoft Research

International Conference on Machine Learning 2020

Collaborators

Wessel P. Bruinsma

Eric Perim

Will Tebbutt

J. Scott Hoskings

Arno Solin

Richard E. Turner

Introduction and Motivation

Introduction

• Gaussian processes are a powerful and popular probabilistic modelling framework for nonlinear functions.

- Inference and learning: $O(n^3p^3)$ time and $O(n^2p^2)$ memory.
- Often alleviated by exploiting structure in **K**.

outputs

Instantaneous Linear Mixing Model (ILMM)

 $\mathbf{K}(t,t) = \mathbf{I}_m$ \mathbf{v} $\mathbf{x} \sim \mathcal{GP}(\mathbf{0}, \mathbf{K}(t,t')),$ $\mathbf{f}(t) = \mathbf{h}_1 x_1(t) + \mathbf{h}_2 x_2(t)$ $= \mathbf{H} \mathbf{x}(t),$ $\mathbf{y}(t) \sim \mathcal{N}(\mathbf{f}(t), \mathbf{\Sigma}),$

x: "latent processes",

H: "basis" or "mixing matrix".

2/17

- Use $m \ll p$ basis vectors: data lives in "pancake" around $col(\mathbf{H})$.
- Generalisation of FA to time series setting.
- Captures many existing MOGPs from literature.
- Inference and learning: $O(m^3n^3)$ instead of $O(p^3n^3)$.

Inside the ILMM

Key Result

3/17

Proposition: This is exact!

Key Result (2)

4/17

Key Result (3)

likelihood of projected observations under projected noise

$$\log p(\mathbf{Y}) = \log \int p(\mathbf{x}) \prod_{i=1}^{n} \mathcal{N}(\mathbf{T}\mathbf{y}_{i} | \mathbf{x}_{i}, \boldsymbol{\Sigma}_{\mathbf{T}}) \, \mathrm{d}\mathbf{x}$$

$$- \frac{1}{2} \sum_{i=1}^{n} ||\mathbf{y}_{i} - \mathbf{H}\mathbf{T}\mathbf{y}_{i}||_{\boldsymbol{\Sigma}}^{2} - \frac{1}{2}n \log \frac{|\boldsymbol{\Sigma}|}{|\boldsymbol{\Sigma}_{\mathbf{T}}|} + \text{const.}$$

$$\text{data "lost" by projection} \quad \text{noise "lost" by projection}$$

- Learning $\mathbf{H} \Leftrightarrow$ learning $\mathbf{T} \Leftrightarrow$ learning a transform of the data!
- "Regularisation terms" prevent underfitting.

Key Insight

- Inference in ILMM: condition ${\bf x}$ on ${\bf Y}_{\text{proj}}$ under noise ${\boldsymbol \Sigma}_{{\bf T}}.$
- Hence,

if x are independent under the prior and the projected noise Σ_{T} is diagonal, then x remain independent upon observing data. Treat latent processes independently: condition x_i on $(\mathbf{Y}_{\text{proj}})_{i:}$ under noise $(\Sigma_{T})_{ii}!$

Decouples inference into independent single-output problems.

"Decoupling" the ILMM

Orthogonal ILMM (OILMM)

$$\begin{split} \mathbf{x} &\sim \mathcal{GP}(\mathbf{0}, \mathbf{K}(t, t')), \\ \mathbf{f}(t) &= \mathbf{Hx}(t) \\ &= \mathbf{US}^{\frac{1}{2}}\mathbf{x}(t), \\ \text{orthogonal diagonal scaling} \\ \mathbf{y}(t) &\sim \mathcal{N}(\mathbf{f}(t), \mathbf{\Sigma}). \end{split}$$

7/17

Key property: $\Sigma_{\mathbf{T}}$ is diagonal!

Benefits of Orthogonality

- Linear scaling in m!
- Trivially compatible with single-output scaling techniques!

Benefits of Orthogonality (2)

9/17

1 Project data and compute proj. noise:

$$\mathbf{Y}_{\mathsf{proj}} = \mathbf{S}^{-\frac{1}{2}} \mathbf{U}^{\mathsf{T}} \mathbf{Y}, \quad \boldsymbol{\Sigma}_{\mathbf{T}} = \sigma^{-2} \mathbf{S}^{-1} + \mathbf{D}.$$

2 For
$$i = 1, ..., m$$
,

compute the log-probability LML_i of $(\mathbf{Y}_{proj})_{:i}$ under latent process x_i and observation noise $(\boldsymbol{\Sigma}_{\mathbf{T}})_{ii}$.

3 Compute the "regularisation term":

$$\mathsf{reg.} = -\frac{n}{2}\log|\mathbf{S}| - \frac{n(p-m)}{2}\log 2\pi\sigma^2 - \frac{1}{2\sigma^2} \|(\mathbf{I}_p - \mathbf{U}\mathbf{U}^\mathsf{T})\mathbf{Y}\|_F^2$$

4 Construct the log-probability of the data Y under the OILMM:

$$\log p(\mathbf{Y}) = \sum_{i=1}^{m} \mathsf{LML}_i + \mathsf{reg}.$$

Complexities of MOGPs

more restrictive	Class	Complexity		
	MOGP	$O(p^3n^3)$	Use single-output scaling techniques	
	ILMM	$O(m^3n^3)$	to also bring down complexity in n	
	OILMM	$O(mn^3) \blacktriangleleft$		
		$O(mnr^2)$	(r inducing points)	
		$O(mnd^3)$	(<i>d</i> -dim. state-space approximation)	

Orthogonality gives excellent computational benefits. But how restrictive is it?

Generality of the OILMM

11/17

Definition

An (O)ILMM is separable if $\mathbf{K}(t,t') = k(t,t')\mathbf{I}_m$. Example: ICM.

ILMM versus OILMM:

- Separable case: without loss of generality.
- Non-separable case: only affects correlations through time.
- ILMM can be approximated by an OILMM (in KL) if the right singular vectors of H are close to unit vectors (in || • ||_F).
- Separable spatio-temporal GP is an OILMM.
- OILMM gives non-separable relaxation of separable models whilst retaining efficient inference.

- Missing data is troublesome: it breaks orthogonality of H.
- In the paper, we derive a simple and effective approximation.

The OILMM in Practice

Demonstration of Generality

	EEG		FX	
	PPLP	SMSE	PPLP	SMSE
ILMM	-2.11	0.49	3.39	0.19
OILMM	-2.11	0.49	3.39	0.19

- Near identical performance on two real-world data sets.
- Demonstrates that missing data approximation works well.

Case Study: Climate Simulators

- Jointly model $p_s = 28$ climate simulators at $p_r = 247$ spatial locations and $n = 10\,000$ points in time.
- Equals $p = p_s p_r \approx 7 \text{ k}$ outputs and $pn \approx 70 \text{ M}$ observations.
- Goal: Learn covariance between simulators with $\mathbf{H} = \mathbf{H}_s \otimes \mathbf{H}_r$.
- Use m = 50 and inducing points to scale decoupled problems.

Case Study: Climate Simulators (2)

16/17

Conclusion

Use projection of the data to accelerate inference in MOGPs with orthogonal bases:

- $\checkmark~$ Linear scaling in m.
- \checkmark Simple to implement.
- \checkmark Trivially compatible with single-output scaling techniques.
- $\checkmark\,$ Does not sacrifice significant expressivity.